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Abstract: We introduce Future LAtent REpresentation Alignment (FLARE),
a novel framework that integrates predictive latent world modeling into robot
policy learning. By aligning features from a diffusion transformer with latent
embeddings of future observations, FLARE enables a diffusion transformer policy
to anticipate latent representations of future observations, allowing it to reason
about long-term consequences while generating actions. Remarkably lightweight,
FLARE requires only minimal architectural modifications—adding a few tokens
to standard vision-language-action (VLA) models—yet delivers substantial per-
formance gains. Across two challenging multitask simulation imitation learning
benchmarks spanning single-arm and humanoid tabletop manipulation, FLARE
achieves state-of-the-art performance, outperforming prior policy learning base-
lines by up to 26%. Moreover, FLARE unlocks the ability to co-train with human
egocentric video demonstrations without action labels, significantly boosting policy
generalization to a novel object with unseen geometry with as few as a single robot
demonstration. Our results establish FLARE as a general and scalable approach
for combining implicit world modeling with high-frequency robotic control.

Keywords: World Model, VLA, Humanoid Robotics

1 Introduction

Human cognitive processes involve sophisticated predictive capabilities that operate largely implicitly.
Consider a common action such as reaching for a coffee mug on a cluttered desk: without thinking
about it, human brains could predict how the hand will move, what obstacles it might encounter, and
how the mug will feel when grasped. This capacity to construct internal representations of future states,
a form of world modeling, is fundamental to efficient human motor control and decision-making.

Several recent works [1, 2, 3, 4, 5, 6] have explored jointly learning world models and policies by
generating future visual frames in parallel with actions. While intuitive, this approach faces notable
practical and conceptual challenges. High-fidelity visual prediction typically requires large-scale
generative models, introducing significant computational overhead and latency. Moreover, optimizing
simultaneously for pixel-level reconstruction and action prediction places competing demands on
model capacity: visual generation emphasizes detailed spatial fidelity and texture synthesis, whereas
action modeling benefits from compact, abstract, task-relevant representations, often leading to
diluted learning efficiency. In this work, we show that a surprisingly simple and flexible recipe, fully
compatible with existing VLA architectures, can surpass prior VLA policy learning methods by a
substantial margin.

We introduce Future LAtent REpresentation Alignment (FLARE), a lightweight yet highly effective
extension to diffusion or flow-matching policies that introduces latent-space world modeling via a
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Figure 1: Comparison of FLARE to a conventional flow-matching (or diffusion) policy. FLARE can train
using both action flow-matching and future latent alignment objectives, leading to improved performance as
well as enabling learning from video-only data such as human ego-view demonstrations.

future alignment objective, eliminating the need for full-frame reconstruction. At its core, FLARE
predicts a compact representation of the robot’s future observation from the hidden states of the action
denoising network. FLARE operates in two key stages. First, we pretrain a compact, action-aware
observation embedding model. While general-purpose embedding models could be used for the target
future embeddings, we find that an action-aware embedding explicitly optimized for downstream
control tasks offers superior performance and efficiency due to its compactness and task alignment.
Next, we co-train the diffusion transformer by introducing a minimal set of additional tokens,
which are optimized to predict the future observation embeddings. This approach requires minimal
modifications to existing VLA architectures [7, 8], making it broadly applicable and easy to deploy.

Despite its simplicity, FLARE achieves state-of-the-art performance across two multitask imitation-
learning benchmarks spanning single-arm and humanoid tabletop manipulation. Notably, when
trained on diverse cross-embodiment robot data, our action-aware embedding model generalizes
effectively to unseen embodiment and tasks. With just 100 trajectories per task collected on a real
GR1 humanoid posttrained from our pretrained action-aware observation embedding model, the
FLARE policy achieves a 95% success rate in real-world evaluations. Finally, FLARE enables
learning from action-free data sources, such as human videos. By leveraging GoPro-collected human
egocentric video demonstrations and only a single real robot demonstration per object, FLARE
successfully learns novel grasping strategies, highlighting its potential for scalable robot learning
from less structured data sources.

2 Background

In this work, following 7y and GROOT N1 [7, 8], we adopt flow-matching [9] as the learning
objective for fitting actions from human demonstrations. Let o; denote the robot’s observation, which
includes image inputs (potentially from multiple views) and a language instruction; let ¢; be the
robot’s proprioceptive state; and let A; = (ay, ..., a1+ ) be an action chunk drawn from expert
demonstrations. We define ¢, = V' L(0;) as the vision-language embedding of the observation.

Given the VL embedding ¢, an action chunk A;, a flow-matching timestep 7 € [0, 1], and sampled
noise € ~ N (0, 1), we construct the noised action chunk as:

Al =7Ar 4+ (1 — 7)e.
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Figure 2: FLARE architecture. State and action token embeddings are concatenated into a sequence with
learnable future token embeddings. The flow matching DiT blocks perform self-attention on this sequence,
and cross-attention to the current vision and text observation embeddings. At a middle layer, the activations
corresponding to the future token embeddings are used to compute a future latent alignment loss, which is the
cosine similarity with vision-language embeddings from a future observation.

Then the model prediction Vy(¢:, A7, g¢) is trained to approximate the denoising direction € — Ay,
by minimizing the following flow-matching loss:

Lin(0) = Er [[|Va(or, A ar) — (€ — Ap)|*] . (1)
We sample the timestep 7 from the distribution p(7) = Beta (S_T; 1.5, 1) with s = 0.999 as in Black

S
et al. [7]. Atinference time, we generate action chunks via K -step denoising. We first sample an

initial chunk A9 ~ A/(0, 1), and then apply forward Euler integration to iteratively refine it:

T T 1 T
At+1/K - At + EV9(¢taAt7qt)'

Following GROOT N1 [8], we set K = 4 throughout all of our experiments, and we use the same
Diffusion Transformer (DiT) architecture [10] for Vj with alternating cross-attention and self-attention
layers to condition on the robot’s vision language embedding ¢;.

3 Method

3.1 Latent World Modeling through Future Latent Representation Alignment

To enable the latent representation within the DiT blocks to predict future latent states, we add
M learnable future token embeddings to the input sequence, such that the sequence contains three
components: (1) the current proprioceptive state ¢; encoded via a state encoder, (2) noised action
chunk A7 = {ra, + (1 — 7)e}. ™ encoded by an action encoder, and (3) a set of M learnable future
tokens. Next, we slice out the intermediate DiT representations corresponding to the M future tokens
at an internal layer L, project those features using an MLP, and finally align these with the frozen
vision-language embeddings of the future observation ¢ zr (see Figure 2).

Our approach is similar to how Representation Alignment (REPA) [11] is applied to improve text-
to-image diffusion models, but with several important differences arising from the setting of latent
world modeling. First, we align a DiT policy with future embeddings, rather than embeddings of the
current observation. Second, our architecture adds learnable future tokens, so that the flow matching
and alignment proceed along separate streams within the DiT, which interact via self-attention.

In this way, we encourage the DiT modules to internally reason about the future latent state while
maintaining their action prediction capability through action flow-matching. Letting B indicate batch
dimension and D indicate embedding dimension, we can write the latent alignment objective as

ﬁalign(9> = _E‘r [COS(f9<¢t, AZv qt)7 g((btJrH)] (2)



where fy — RBXMXD outputs the DiT activations for the M future tokens at layer L, and g —
REXMXD iq the encoder of the future observation ¢, ;7. The overall loss function is

,C = Efm + )\»Calign (3)

Empirically, we found A = 0.2 worked the best in our experiments. We refer the readers to Section 4.4
for a detailed analysis of this choice.

3.2 Action-aware Future Embedding Model

While our future latent alignment framework is broadly compatible with various embedding models,
we find that incorporating an action-aware future embedding yields further improvements in both
performance and efficiency. To this end, we propose a compact vision-language embedding of the
robot’s current observation, explicitly optimized for policy learning. The design objective is twofold:
achieving compactness while ensuring action-awareness.

Specifically, we leverage both the vision and text encoders from Sigl.IP-2 [12] to encode the robot’s
image observations and text instructions. The encoded tokens are then fused using four layers of
self-attention transformer blocks to capture cross-modal dependencies. Subsequently, we apply
a Q-former [13] module to compress the fused sequence into M = 32 learnable query tokens,
producing a compact, fixed-size representation that naturally generalizes to multi-camera inputs.
To ensure action-awareness, we train the vision language embedding end-to-end with the regular
action flow-matching objective to predict the robot’s actions by attaching 8 DiT blocks. In this
way, all task-relevant information is guaranteed to be captured within the latent token embeddings.

To pretrain the embedding model, we lever- Language Table (OXE) -
age a diverse mixture of cross-embodiment PLEX (OXE) - //
robot datasets, comprising both simulated and ~_Mutex (OXE) -
real-world humanoid tabletop manipulation ~Foboset OX5) 4
data from GROOT N1 [8] and seven additional ~ ;"9ee(0X8/
datasets from Open X-Embodiment [14], to- Freeal @,
taling approximately 2,000 hours of robotic ~ _ Droid(0X§) ©
data. Following pretraining, we posttrain
the downstream policy jointly with the latent
world model and the action prediction objective
across downstream domains and tasks. Specif-
ically, for posttraining, we initialize the down-
stream policy’s encoder with the pretrained em-
bedding model, while also using the pretrained
embedding model to define the prediction targets for future latent representations. To mitigate
distribution shifts between pretraining and downstream visual observations, rather than keeping the
embedding model entirely frozen, we adopt an exponential moving average (EMA) update with
respect to the policy’s encoder. This strategy allows the embedding model to gradually adapt in
tandem with the evolving vision and language encoders during policy fine-tuning. Empirically, we
find that an EMA update rate of 0.995 performs the best. We refer the readers to Section 4.4 for a
detailed analysis of this choice.

Real GR1 Humanoid
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-

24 Simulation GR1 Tasks

Figure 3: Data mixture of pretrained action-aware vision
language embedding model

4 Experiments

4.1 Multitask Benchmark Performance

In this section, we evaluate our latent world model on two multitask benchmarks that cover both
single-arm manipulation and bimanual humanoid tabletop manipulation tasks. For the single-arm
manipulation benchmark, we adopt RoboCasa [15], consisting of 24 atomic tasks in a simulated
kitchen environment, including pick-and-place, door manipulation, faucet operation, and more.
Robot’s observations include three RGB images captured from cameras mounted on the left, right,



Methods FLARE Policy UWM GROOT N1  Diffusion

Only (Scratch) Policy
Pick and Place 53.2% 43.8% 35.6% 44.1% 29.2%
Open & Close Doors / Drawers 88.8% 78.7% 82.0% 80.0% 78.7%
Others 80.0% 75.2% 74.2% 69.6% 61.3%
24 RoboCasa Tasks Average 70.1% 61.9% 60.8% 60.6% 51.7%
Pick and Place Tasks 58.2% 46.6% 30.1% 51.8% 40.4%
Articulated Tasks 51.3% 47.4% 38.4% 42.8% 50.1%
24 GR1 Tasks Average 55.0% 44.0% 29.5% 45.1% 40.9%

Table 1: Task Success Rate Breakdown for Multitask Policy on RoboCasa and GR1 Tabletop Manipulation
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Figure 4: Multitask Simulation Benchmarks: We use 24 RoboCasa [15] and 24 GR-1 tabletop manipulation
tasks as a multitask simulation benchmark suite in this paper.

and wrist of the robot. Next, we incorporate 24 GR-1 tabletop simulation tasks from GROOT N1 [8],
which emphasize dexterous hand control with the GR-1 humanoid robot. This suite includes 18 object
rearrangement tasks—picking up and placing objects between source and target containers—and
6 tasks involving interaction with articulated objects such as cabinets, drawers, and microwaves.
Observation consists of a single RGB image from an egocentric camera positioned on the robot’s head.

To ensure a fair comparison between our method and the baseline, for experiments in this section,
we do not use the pretrained embedding model mentioned in Section 3.2. Instead, we pretrain the
embedding model exclusively on the same in-domain multitask dataset for 80,000 gradient steps,
ensuring that any performance gains cannot be attributed to pretraining data with the embedding
model. In particular, we include the following baselines for the experimental results:

1. Diffusion Policy [16]: Diffusion Policy models action distributions via a diffusion-based
generative process, rather than using flow matching. It uses a U-Net architecture that
progressively denoises random noise to generate the final action.

2. UWM [4]: We select UWM as the main baseline for methods that jointly learn video and
action prediction objectives. UWM predicts image VAE latents and actions jointly with a
diffusion objective.

3. GROOT N1 (Scratch) [8]: Since GROOT N1 is pretrained on a much broader data mixture,
we ensure a fair comparison by using the same architecture but initializing the DiT layers
from scratch, while only loading the pretrained Eagle VLM [17] model weights.

4. FLARE with Policy Only: We use the exact same model architecture as FLARE, as
mentioned in Section 3.2, but train it solely with the policy learning objective.

All methods are trained for 80,000 gradient steps on the multitask robot dataset, except for UWM. We
noticed that UWM performance is still improving at the end of 80k gradient steps, and thus we extend
its training to 400k steps—five times the training budget allocated to the other methods. Following
GROOT N1 [8], we evaluate each model checkpoint for 50 episodes per task every 1000 gradient
steps, and report the maximum success rate over the final five checkpoints for each method.
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Figure 5: Real GR1 Tasks Setup: We evaluate four tabletop manipulation tasks on a real GR1 humanoid robot.
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Figure 6: (Left): Post-training results on 24 RoboCasa tasks. (Right): Post-training results on 4 Real GR1
humanoid tasks.

As shown in Table 1, we draw two key observations. First, FLARE consistently outperforms all
baseline methods, including both the policy-only baselines and UWM. This highlights the strength of
our compact, action-aware latent world modeling objective in enabling more effective policy learning.
Additionally, in our experiments, we also observe that FLARE with the policy-only objective, trained
for 160k gradient steps, achieves only 44.1% success rate, resulting in no performance difference
compared with 80k gradient steps. Thus, the improved results cannot simply be attributed to more
training steps with FLARE. Second, even when trained with only the policy objective, FLARE still
achieves performance on par with GROOT N1 initialized from scratch, despite GROOT N1 using a
larger VLM backbone. This result underscores the quality of our Q-former-based vision-language
embedding model in capturing action-relevant information.

4.2 Data-efficient Post-training with Cross-embodiment Pretrained Embedding Model

While the latent world model demonstrates substantial performance gains, as shown in the previous
section, it requires training a separate embedding model for each domain. In this section, we
evaluate FLARE with the pretrained embedding model mentioned in Section 3.2 as the future
prediction target, focusing on unseen embodiments and tasks with data-limited posttraining settings.
Specifically, we select 24 RoboCasa arm tasks and 4 real-world GR1 humanoid tabletop manipulation
tasks as the evaluation benchmarks, and post-train the policy jointly with the latent world model
and policy objectives, comparing it against a baseline that is post-trained using only the policy
objective. In particular, for the policy-only baseline, we initialize both the Q-former-based vision
language embedding and the policy’s DiT model weights from the cross-embodiment pretrained
model. For FLARE, we only warm start the vision language embedding model.

For the evaluation protocol, we follow the same procedure described in Section 4.1 for the 24
RoboCasa tasks. For the 4 real-world GR-1 tasks shown in Figure 5, we define 8 reference initial
frames per task, each involving 4 distinct objects (apple, can, bottled water, cucumber) to manipulate,
and report the success rate of the final policy checkpoint for each method.
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Figure 7: Generalizing to unseen objects with human egocentric videos and few-shot real robot demos

As shown in Figure 6, across both the 24 RoboCasa simulation tasks and the real-world GR-1
humanoid tasks, FLARE consistently outperforms the policy-only baseline. The improvement
is especially pronounced under limited data conditions, achieving a 10% gain on RoboCasa with
100 trajectories per task for posttraining. Notably, although the pretrained embedding model has
never seen RoboCasa tasks during pretraining, using it as the future embedding achieves comparable
performance with 1000 trajectories to an embedding model trained exclusively on the 24 RoboCasa
arm tasks (71.3% vs. 70.2% as reported in Section 4.1).

On the real GR-1 humanoid robot, we achieve a success rate of up to 95.1%, averaging 14% higher
than the baseline method. Qualitatively, we observe that in scenarios where a can or water bottle is
placed close to the robot’s hand, the baseline method trained with only the policy objective often
knocks over the object. In contrast, FLARE policy learns to maneuver around or over the object and
successfully grasp, highlighting the benefits of future latent reasoning enabled by FLARE.

4.3 Leveraging Human Egocentric Trajectories without Action Labels

While our previous experiments demonstrate that the proposed future latent alignment objective
significantly enhances policy performance when trained on action-labeled data, we further show
that it can be naturally extended to trajectories without action annotations, such as human egocen-
tric demonstrations. This setting is particularly attractive, as collecting human demonstrations is
substantially more cost-effective and efficient than teleoperating a robot to execute the same tasks.

To evaluate this, we select five novel objects with distinctive geometries that are absent from the
training dataset, each requiring novel grasping strategies. For instance, the blue tape object is large
and thus requires a top-down grasp by the robot hand. For each object, we collect 150 human
egocentric demonstrations per object by mounting a GoPro on the demonstrator’s head while they
perform similar tasks as the humanoid robot. On the robot side, we collect only 10 teleoperated
demonstrations per object and train the policy using a mixture of these limited demonstrations, our
GR-1 pretraining dataset, and the egocentric human videos.

For real-robot demonstrations with actions, we apply both the action flow-matching loss and the
future alignment objective. In contrast, for the human egocentric videos without action labels, we
rely solely on the future alignment loss to learn the latent dynamics. At evaluation time, we select
five initial poses as reference images for each object and measure the robot’s success rate. Partial
credit (0.5) is given when the robot successfully grasps the object but fails to place it into the basket.

As shown in Figure 7, with only 1 teleoperated trajectory per object, FLARE already achieves up to a
60% success rate on novel objects. When provided with 10 trajectories per object, and jointly trained
with human videos, FLARE further improves to an 80% success rate—roughly doubling the perfor-
mance of a baseline trained solely on action-labeled data. These results highlight that FLARE not
only enhances learning from action-labeled demonstrations, but also effectively leverages unlabeled
human demonstrations to improve generalization by capturing latent task dynamics.



4.4 Ablation Study

Using the Pretrained Siglip2 as Future Embed-
ding model: While leveraging a policy-oriented
future embedding model results in strong policy ~ N0 FLARE loss 43.9

Method Success Rate (%)

performance and enhanced training efficiency, we gigﬁg% (Average Pooled) ggg
also explore an alternative setting that employs pre- Acgtion—aware Ergnbedding 55.0

trained Sigl.IP2-Large vision tokens at timestep
t 4 16 as prediction targets. Specifically, we exper- Table 2: Ablation of target embedding models.
iment using both raw SigL.IP2 vision tokens (256

tokens per image) and 2x2 average-pooled tokens (64 tokens per image). As illustrated in Table 2,
our FLARE framework maintains compatibility with diverse teacher encoder models beyond the
policy-oriented embedding model. Although we get the optimal performance with the embedding
model pretrained specifically on the target domain, using a more general-purpose vision encoder such
as SigLIP2 still yields a significant 7% improvement over baseline methods.
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Figure 8: (Left): Ablation of the DiT Layer used in FLARE loss (Left): Ablation of FLARE loss coefficient.

Index of FLARE Loss Layer and Coefficient of FLARE Loss: A key design decision in
FLARE is selecting the DiT layer at which to apply the future latent alignment loss, and the
coefficient A of FLARE loss. In our main experiments, we apply this objective at layer 6 out
of 8 total layers in the DiT architecture. Applying it at deeper layers allows a larger portion of
the model weights to benefit from the supervision of future latent prediction, but may also lead to
conflicts between the action prediction and future alignment objectives. To evaluate the effect of
these two hyperparameters, we evaluate FLARE on the GR1 simulation benchmark with different
layer indexes and coefficients used for alignment. As shown in Figure 8, the model maintains strong
performance across a range of hyperparameter setups. However, we do notice that applying the
alignment objective too early—e.g., at layer 4—Ileads to a notable drop in performance, highlighting
the importance of aligning the future prediction objective with the action denoising process.
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Figure 9: Effect of EMA Coefficient p: We report the policy success rate using 24 x 300 training trajectories
across 24 RoboCasa tasks. Baseline is trained without FLARE future alignment loss, i.e., a policy-only
objective.



Exponential Moving Average (EMA) of Pretrained Action-aware Embedding Model: As dis-
cussed in Section 3.2, to address the distribution shift between pretraining and downstream tasks for
our action-aware vision-language target embedding model, we incorporate an exponential moving
average (EMA) update. Specifically, at each gradient step, the target embedding model parameters
are updated as follows:

Htarget,vl,embedding — patarget,embedding + (1 - p)apolicy,vl,embedding

The EMA update enables the prediction target to adapt slowly in tandem with the evolving policy
encoder, providing stability across training. Here, We evaluate several choices of the EMA coefficient
p € {0.99,0.995,0.999, 1.0}, each using 24 x 300 trajectories to train the FLARE policy. The
final average success rates are reported in Figure 9. We find that while all EMA variants outperform
the baseline method without FLARE future latent alignment objective, p = 0.995 yields the best
performance and is used in all experiments. Notably, even with p = 1.0 (i.e., no EMA), FLARE still
surpasses the baseline, whereas p = 0.99 performs the worst, likely due to the instability caused by
frequent target updates.

5 Related Work

Generative World Models for Robotics: There has been a rich body of research on world models for
robotics, ranging from model-based control to model-based reinforcement learning [18, 19, 20, 21,
22, 23]. More recently, with advances in image and video generation, several works have explored
the integration of generative modeling into policy learning [1, 2, 6, 4, 3, 24]. One line of work [6, 25]
uses image diffusion models with inverse dynamics models to close the perception-to-action loop.
The GR1 and GR2 families introduce end-to-end models that jointly predict discrete image tokens
and actions using a unified next-token prediction objective. Other approaches [4, 3, 26, 27, 28, 29, 30]
instead aim to jointly predict continuous image latents and actions. For instance, UWM [4] and
UVA [3] jointly denoise VAE latents of future frames along with robot actions. DINO-WM [26]
utilizes DINO features [26] to train a latent dynamics model for model-based planning.

Our work builds upon recent advances in representation learning, particularly Representation Align-
ment [11], which has shown remarkable success in accelerating the convergence of diffusion trans-
formers for image generation and is key to state-of-the-art flow-matching models like Seedream-
3.0 [31]. However, our approach differs in two crucial ways: we train a flow-matching policy rather
than an image model, and we align the DiT representation with features from future observations
rather than current ones. In contrast to existing works, FLARE introduces an implicit latent world
model objective that bypasses explicit reconstruction of future frames or latents. This simple design
enables reasoning over a compact, action-aware latent space and avoids the computational burden of
high-fidelity generation, while maintaining compatibility with standard VLA architectures, without
requiring major architectural redesign. While DINO-WM focuses on zero-shot planning, FLARE is
designed for policy and world model co-training, though planning could be a valuable future extension.

Vision Language Action Models. A growing body of recent work [32, 33, 7, 34, 35, 36, 37, 38, 39,
40, 41, 42] has focused on developing general-purpose foundational vision-language-action (VLA)
models by fine-tuning vision-language models for downstream robotics tasks. Among these works,
models such as [34, 42, 43, 44] autoregressively predict sequences of discrete action tokens using
the next-token prediction objective. In contrast, methods like [45, 7, 8] leverage diffusion-based or
flow-matching policy heads to bridge pretrained VLMs with continuous action generation. In this
work, inspired by the architecture of GROOT-N1 [8], we adopt a flow-matching policy head built with
diffusion transformer blocks, using interleaved self-attention and cross-attention layers to condition
on the fused vision-language embeddings.

Learning from Egocentric Videos. Several approaches have sought to enhance robot learning
by leveraging human egocentric videos. These efforts extract diverse forms of information, such
as human-object interactions [46], object affordances [47, 48, 49, 50], and visual trace trajecto-
ries [51, 52]. Other lines of work aim to translate human motions into robotic behaviors using hand



pose estimators [53, 54, 50, 55, 56, 57] or motion capture systems [58]. In this work, we show that
future latent alignment provides a lightweight and effective alternative that does not require explicit
pose estimators or point tracking tools, maximally reducing the engineering efforts. A complementary
direction focuses on learning latent actions from visual deltas between current and future frames to
guide downstream policy learning [41, 59, 60, 61, 62, 63]. Unlike latent actions as intermediate repre-
sentations, whose correlation with ground-truth actions is unclear, our action-aware vision-language
embedding directly aligns with future observations, resulting in a simple yet effective framework that
naturally captures all the temporal dynamics information essential for effective policy learning.

6 Limitations

In this work, we focus mainly on imitation learning with pick-and-place tasks on a real humanoid robot.
Extending to more complex humanoid tasks that require more fine-grained dexterous manipulation,
and incorporating reinforcement learning into the training paradigm, remains an important direction
for future work. Moreover, although our method enables generalization to novel objects, it still relies
on a small number of expert demonstrations, which may limit scalability in settings where such
data is hard to acquire. Additionally, in this paper, we focus on egocentric human video datasets
collected in controlled settings using head-mounted GoPro cameras. Extending to more diverse and
larger-scale egocentric motion datasets captured in natural environments becomes a promising future
direction of our work.

7 Conclusion

We present Future Latent Representation Alignment (FLARE), a simple yet effective framework for
jointly learning robot policy and latent world dynamics. By aligning the future representations of
the robot’s observations with the hidden states of the action denoising network, FLARE enables
the policy to implicitly reason about future states while predicting actions. This approach leads
to state-of-the-art performance on challenging robotic manipulation benchmarks. Furthermore,
FLARE unlocks co-training with human egocentric video demonstrations that lack action labels,
significantly improving generalization to novel objects with minimal real-robot teleoperation data.
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A Details of Q-former based Vision Language Embedding Module

Vision Language Embedding Tokens

[ Feed-forward ]

[ Self-Attention ]

Sigip2 Text Model

Pick up apple to (32 Tokens)

plate

Sigip2 Vision
Model

Figure 10: Our Q-former-based Vision Language Embedding Module

Learnable Query Tokens

We present the architectural details of our compact Q-former-based vision-language embedding
module. Specifically, we adopt siglip2-large-patch16-256 as the backbone for both vision and
language encoders. The SigLIP2 vision encoder processes 256x256 resolution robot images into
256 patch tokens, while the language encoder encodes padded robot instructions into 32 language
tokens. These 256 vision tokens and 32 language tokens are concatenated and passed through four
layers of self-attention transformers to yield 288 fused vision-language tokens. To obtain a compact
representation, we apply a Q-former architecture [13], where 32 learnable query tokens—randomly
initialized—interact with the 288 fused tokens through interleaved self-attention and cross-attention

layers, producing 32 compressed vision-language tokens.

B Pretraining Data Mixture

Details of pretraining data mixture are presented in Table 3.

Table 3: Action-Aware Vision Language Embedding Pre-training Dataset Statistics

Dataset Length (Frames) Duration (hr) FPS Camera View Category

GR-1 In-house Dataset 6.4M 88.4 20 Egocentric  Real robot
DROID (OXE) [64] 23.1M 428.3 15 Left, Right, Wrist ~ Real robot
RT-1 (OXE) [32] 3.7M 338.4 3 Egocentric  Real robot
Language Table (OXE) [65] 7.0M 195.7 10 Front-facing  Real robot
Bridge-v2 (OXE) [66] 2.0M 111.1 5  Shoulder, left, right, wrist ~ Real robot
MUTEX (OXE) [67] 362K 5.0 20 Wrist  Real robot
Plex (OXE) [68] 77K 1.1 20 Wrist  Real robot
RoboSet (OXE) [69] 1.4M 78.9 5 Left, Right, Wrist  Real robot
GR-1 Simulation 125.5M 1,742.6 20 Egocentric ~ Simulation
Total 169.5M 2,989.5 - - -

C Training Details

For the pretraining of the action-aware vision language embedding module, we use 256 NVIDIA
H100 GPUs with a batch size of 8192 for 150,000 gradient steps. We use AdamW [70] optimizer
with 81 = 0.95, B2 = 0.999, and € = le-8. A weight decay of le-5 is applied, and the learning rate
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follows a cosine scheduling strategy with a warmup ratio of 0.05. Following [7, 8], we sample the
flowmatching denoising timestep from p(7) = Beta(*7%;1.5,1), s = 0.999.

For the multitask experiments of FLARE conducted in Sections 4.1 and 4.2, we use 32 NVIDIA H100
GPUS with batch size 1024 for 80,000 gradient steps, while keeping the rest of the hyperparameter
setups exactly the same.

D Pseudocode of FLARE

Here we present a Python-style pseudocode of FLARE loss calculation as well as the entire training
loop.

Algorithm 1 Python-style pseudocode for FLARE training

target_vl_embedding: pretrained action-aware vision language embedding
vl_embedding: vision language embedding of the current policy

dit: diffusion transformer of the current policy

action_embedding: 2-layer MLP to embed noisy actions

state_embedding: 2-layer MLP to embed prioprioceptive state
action_decode: 2-layer MLP to decode robot’s actions
embedding_decode: 2-layer MLP to decode predicted embeddings

N: Number of gradient steps

M: Number of tokens in VL

lambda: coefficient of FLARE loss (default is 0.2)

HHEHHHA R

### Initialization

future_tokens = nn.Embedding(M, hiddem_dim)
vl_embedding.load_state_dict(vl_embedding.state_dict ())
target_vl_embedding.requires_grad = False

for n in range(N):
obs, proprio, actions, future_obs = dataset.next ()

### Prepare noisy action inputs

noise = gaussian.sample ()

timestep = beta.sample() # sample flowmatching timestep
noisy_action = timestep * actions + (l1-timestep) * noise
velocity = actions - noise

### Get state, action, and observation embedding tokens
action_tokens action_embed (noisy_action, timestep)
state_token state_embed (state)

vl_tokens vl_embedding (obs)

### Pass through DiT layers
sa_tokens = torch.concat([state_token, action_tokens, future_tokens], dim=1)
policy_outputs = dit(sa_tokens, vl_tokens)

### Calculate action flowmatching loss
action_outputs = action_decoder (policy_outputs[:, 1:1 + action_tokens.shape[1]])
action_loss = MSE(action_outputs, velocity)

### Calculate FLARE loss
with torch.no_grad():
embedding_to_align = target_vl_embedding(future_obs)
predict_embedding = decode_embedding(policy_outputs[:, -M:])
flare_loss = 1-COSINE_SIMILARITY(predict_embedding, embedding_to_align)

### Optimize the combined loss

loss = action_loss + lambda * flare_loss
optimizer.zero_grad ()

loss.backward ()

optimizer.step ()
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E Real GR1 Humanoid Rollouts

E.1 4 Pick-and-place Tasks

Below, we present policy rollouts from the FLARE trained policy on 4 real-world GR1 humanoid
pick-and-place tasks, together with the task’s language instructions. Qualitatively, we observe that
when manipulating objects such as a bottled water or a Coke can, the FLARE policy learns to
maneuver the hand around the object, hovering over the water bottle, rather than striking and knocking
it over.

pick up bottled water to baske

i LB

pick up cucumber to basket

p | B

Figure 11: FLARE policy rollout on real GR1 humanoid robot with 4 pick-and-place tasks
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E.2 Manipulating Novel Objects

Below, we present policy rollouts from the FLARE trained policy manipulating 5 novel objects.

pick up s

tuffed toy to basket
i\ \ ; J X \:

N

pick up hammer to plate

pick up blue tape to basket
R '

aser to pan

pick up blackboard er
¥ 3 V4 \ ¥ |2

Figure 12: FLARE policy rollout manipulating 5 novel objects
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