

ROBOTS

Disclaimer

This presentation has been prepared by ROBOTIS. (hereinafter “the Company”), with an aim to provide investors with the latest information about the Company. The presentation may not be reproduced in whole or in part, nor may any of its contents be divulged to any third party without prior consent by the Company.

By participating in this presentation, investors are assumed to acknowledge the stated restrictions, and any violation of the restrictions may result in the violation of the Capital Market Consolidation Act in Korea.

The accuracy of the ‘forward-looking statements’ included in this presentation has not been independently verified. The forward-looking statements include projections and outlook of the Company concerning its business status and financial results, and include, but not limited to, words such as ‘expectation’, ‘forecast’, ‘plan’, ‘anticipation’ or ‘(E)’. The forward-looking statements are subject to changes in business environment and involve inherent risk and uncertainties. We caution you that a number of important factors could cause actual results to differ materially from those contained in any forward-looking statements.

Furthermore, any future expectations are based on current business environment and the Company’s management direction as of the date of presentation. Future projections may differ or change due to changes in business environment or due to strategic changes by the Company. The contents in this presentation may change without any prior notification. None of the Company nor its respective officers assume legal responsibility for any damages or losses that may have occurred from the use of this presentation, including errors and other mistakes that may be included in this presentation.

This presentation does not constitute or form a part of an offer or solicitation to purchase or subscribe for securities for sale, and any information included in this presentation may not be used as a basis for related contracts, subscriptions or investment decisions.

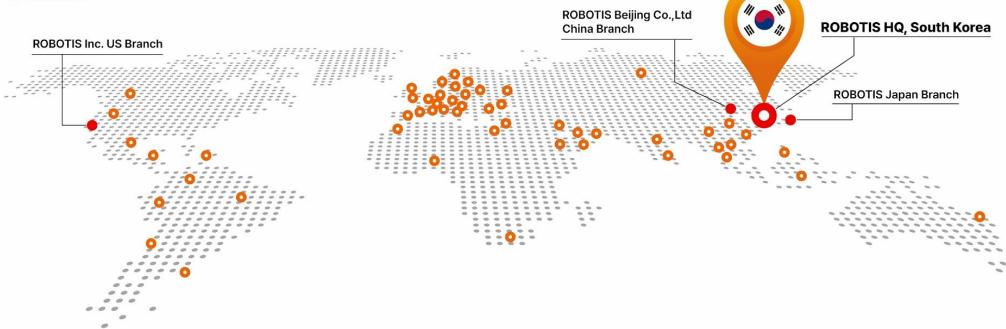
ROBOTIS

Company Introduction

Robot is...ROBOTIS = DYNAMIXEL (Smart Robot Actuator)

Accelerating Growth in Actuator-Driven Physical AI

<https://youtu.be/vozkbhSgcSA>


5

Company Overview

	07	AI Worker launched
2025	06	RobotisAI spun off
	05	LG Electronics - Physical AI Humanoid Partnership
	03	Physical AI' AI Manipulator Unveiled
	12	Exclusive Supply Deal with Senxeed Robotics (Japan)
2024	11	Joint 'Physical AI' R&D with MIT
	10	MLIT-LH Housing R&D MOU (robot built-in system)
	06	First Korean Robot to Get Japanese Subsidy
	05	LG Electronics - Outdoor Autonomous Robot Supply
	04	DYNAMIXEL-Y New Lineup Released
	01	First Operational Safety Certification (Intelligent Robot Act)
	03	Autonomous Driving Robots Entered US & Japan markets
2022	06	Autonomous Robot Hotel Delivery in Korea
2021	10	UPS US Service Pilot for Autonomous Driving Robots
	01	Outdoor Autonomous Urban Delivery Pilot Started
2020	12	Awarded Minister of SMEs and Startups Award
	6	Selected for MOTIE Robot Tech Project
2019	11	Nominated as 'World-Class Product' - 'DYNAMIXEL'
	07	Delivery Robot Demonstration Project
2018	12	Awarded 'Ten Million Dollar Export Tower'
	08	Public IPO on the KOSDAQ
	01	Strategic Alliance with LG Electronics
2014	12	Named One of NYT's Top 10 Home Robots
2013	03	THORMANG Humanoid Robot Released
2012	10	Presidential Award (MKE Robot Grand Challenge)
2003	10	DYNAMIXEL Launched
1999	03	Robotis Co. Ltd. Established

Global Key Hubs |

- Headquarter
- Local Branch (3)
- Distributors

Subsidiary | RobotisAI

ROBOTIS Regional Offices |

USA	4222 Green River Rd., Corona, CA, 92880
China	Room 4031, Zhongren Building, No. 10 Jia, Chaoyangmenwai Street, Chaoyang District, Beijing, China
Japan	Haruka Building 3F, 2-12-14 Kanda Ogawamachi, Chiyoda-ku, Tokyo 101-0052, Japan

Business Sectors

Precision Actuator for Robotic Systems

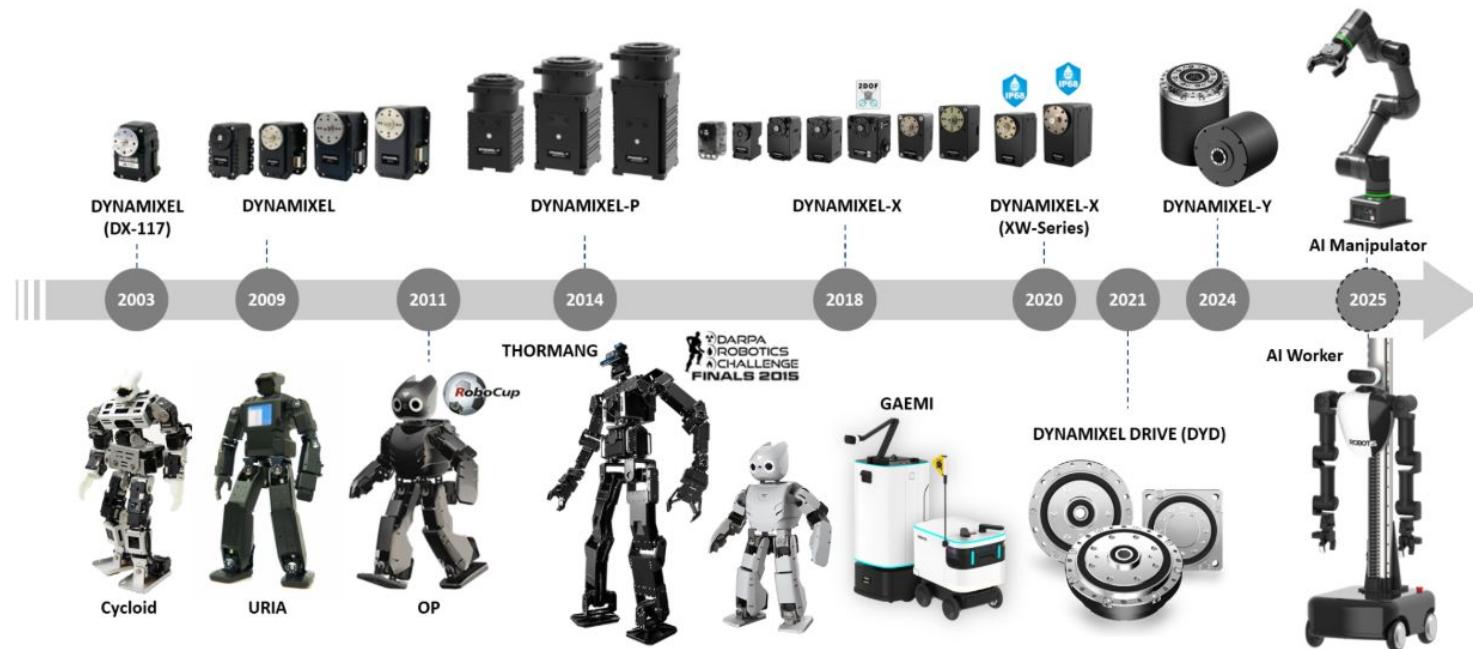
Mobile Delivery Robot

ROBOTIS

RobotisAI

Strategic Spin-Off (RobotisAI): Capturing Market Opportunities for Enhanced Profitability and Growth

DYNAMIXEL


for the Physical AI Era

DYNAMIXEL: ROBOTIS Core Technology

26 Years of Excellence,

90% in house technology- Actuators and Reducers Across a Diverse Portfolio

DYNAMIXEL, a smart all-in-one robot actuator, integrates a DC motor, controller, driver, sensors, reduction gear, and network communication into a single module. This integration significantly simplifies robot construction and control.

DYNAMIXEL Lineup

ROBOTIS Presents Optimized Robotic Actuator Solutions through DYNAMIXEL's Diverse Lineup of Over 100 Models

AI Manipulator

for the Physical AI Era

Mobile Aloha Robot by Stanford University (+ Google & Meta) Powered by DYNAMIXEL.

OMY-AI3M ROBOTIS Telepresence Demonstration

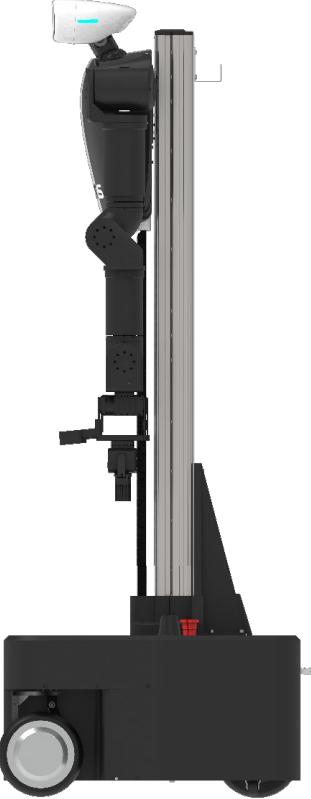
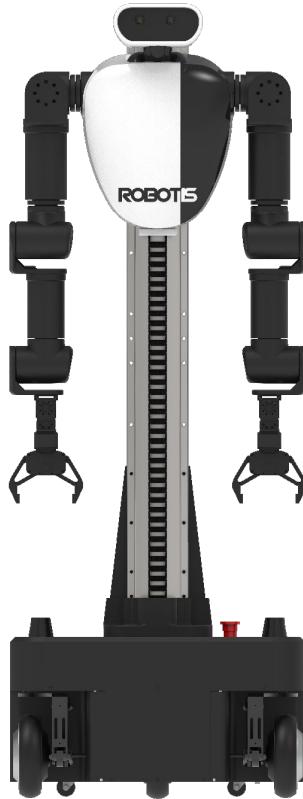
AI Manipulator

- **Gripper Haptic Support:** The gripper provides haptic feedback for a more realistic and intuitive grasping experience.
- **Gripper Trigger Support:** The gripper's trigger can be customized to enable additional functions.
- **Gravity Compensation Support:** The software provides gravity compensation to ensure smooth and stable movements.
- **Friction Compensation Support:** The software compensates for friction to provide smoother movements and reduce operator fatigue.
- **ROS 2 Support:**
 - Individual servo control and monitoring through the SDK.
 - Support for **MoveIt** and **Gazebo** simulation of full systems.
- **C++ and Python Support:** The system supports both **C++** and **Python** programming languages.

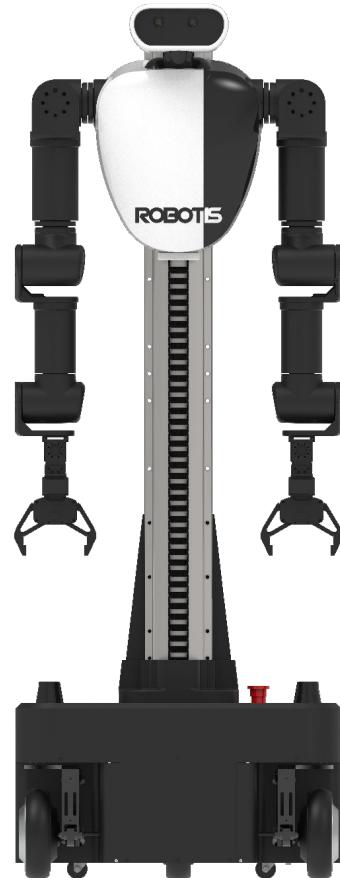
- **Hardware and Software Limit Setting:** Hardware and software limits can be configured to ensure safety and prevent errors.
- **Standardized URDF Provided:** A standardized URDF (Unified Robot Description Format) is provided for easy integration with other systems.
- **Easy Customization:** Link lengths, joint types, and placement can be easily customized.
- **Open Source:** The source code is open, allowing for community contributions and modifications.
- **Extensive DXL SDK Support:** The DYNAMIXEL SDK provides support for many major programming languages, and allows seamless integration of all types of DYNAMIXEL actuators.

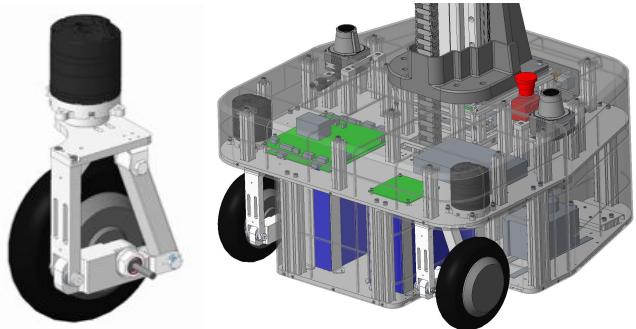
AI Worker

for the Physical AI Era

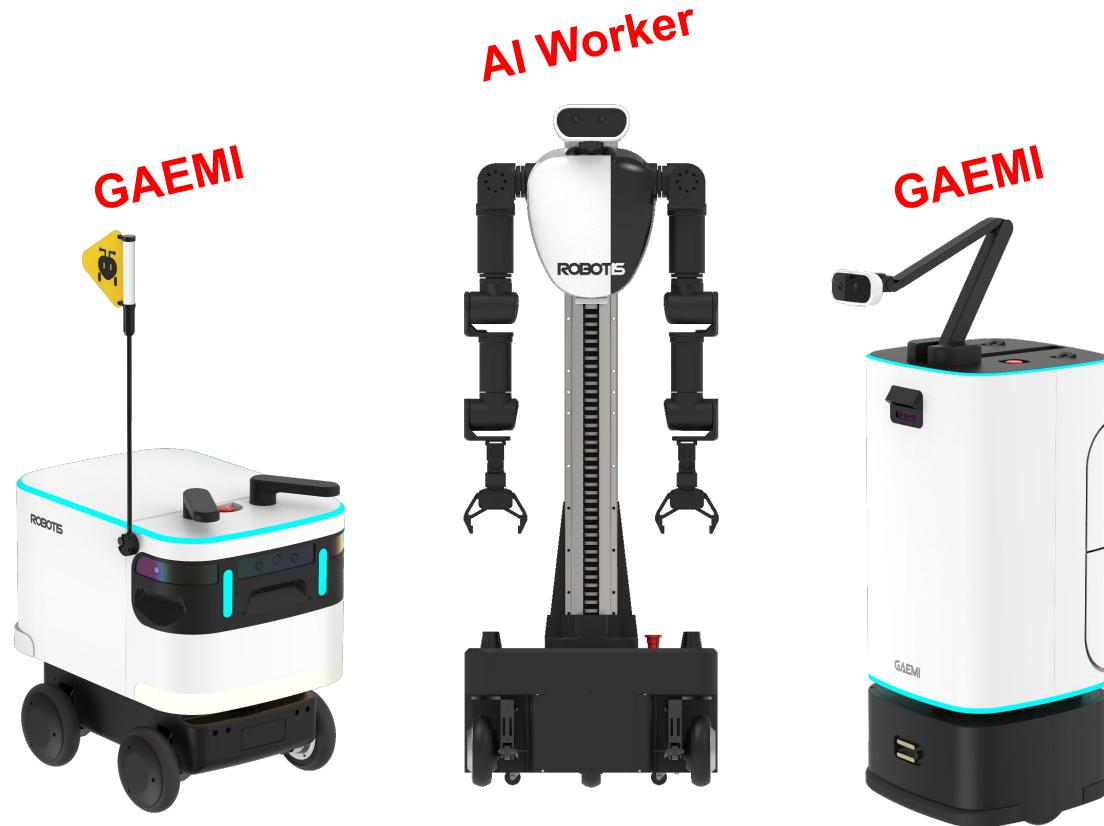


*The market for humanoid robots, which replace human labor, is projected to grow to \$30 trillion within the next decade.
(Source: Morgan Stanley, "Humanoid 100" report)*

Imitation Learning Demo: From Tele-Operation to Inference




AI Worker: FFW (Freedom from Work)

Technical Specifications


Dimensions	604 x 602 x 1,623 (WxDxH, mm) 23.8 x 23.7 x 63.8 (WxDxH, inches)
Weight	90 kg (198 lb)
Arm Reach	641 mm (to wrist) + hand
Arm Payload	3.0 kg (single arm), 5.0 kg (peak) 6.0 kg (dual arm), 10.0 kg (peak)
Mobile Type	Swerve Drive
Actuator	DYNAMIXEL X, Y, P
Degrees of Freedom	Total: 25 DOF Arm: 7 DOF x 2 Gripper: 1 DOF x 2 Head: 2 DOF x 1 Lift: 1 DOF x 1 Mobile: 6 DOF
Mobile Platform Speed (Swerve)	1.5 m/s
Battery	25V, 80Ah (2,040Wh)
Exterior Materials	Aluminium, Plastic
Sensors	RGBD Camera x 3, LiDAR x 2, IMU
Computer	NVIDIA Jetson AGX Orin 32GB
Ambient Operating Temperature	0 ~ 40 °C

Swerve Drive	Omni Wheel	Mecanum Wheel	
Precision of data acquisition	◎	△	○
Diversity of motion execution	◎	○	○
Reliability of ground truth	◎	△	△
Efficiency of model training	◎	△	○
Consistency in long-term data collection	◎	△	○

ROBOTIS
Milestone

Physical AI: A New Trend Urging Action

ROBOTIS


ELEGANT: Expressive and functional movement design for non-anthropomorphic robots

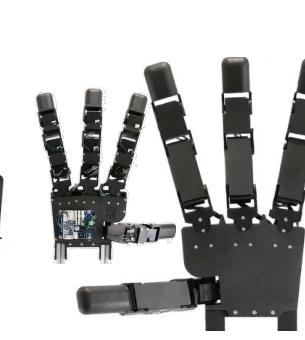
Google DeepMind

Carnegie Mellon University

Grippers and Hands (ROBOTIS Partners)

ROBOTIS
RH-P12-RN

TESOLLO
DG-5F


TESOLLO
DG-4F

TESOLLO
DG-3F

WONIK ROBOTICS
Allegro Hand

TILBURG
ROBOTICS
Tilburg Hand

Tatum Robotics
Tatum T1

 seed robotics
RH8D, RH6D

 SCRAMP
ROBOTICS

SAKE
Robotics

TEXAS
The University of Texas at Austin
LEGATO

 Carnegie
Mellon
University
LEAP Hand

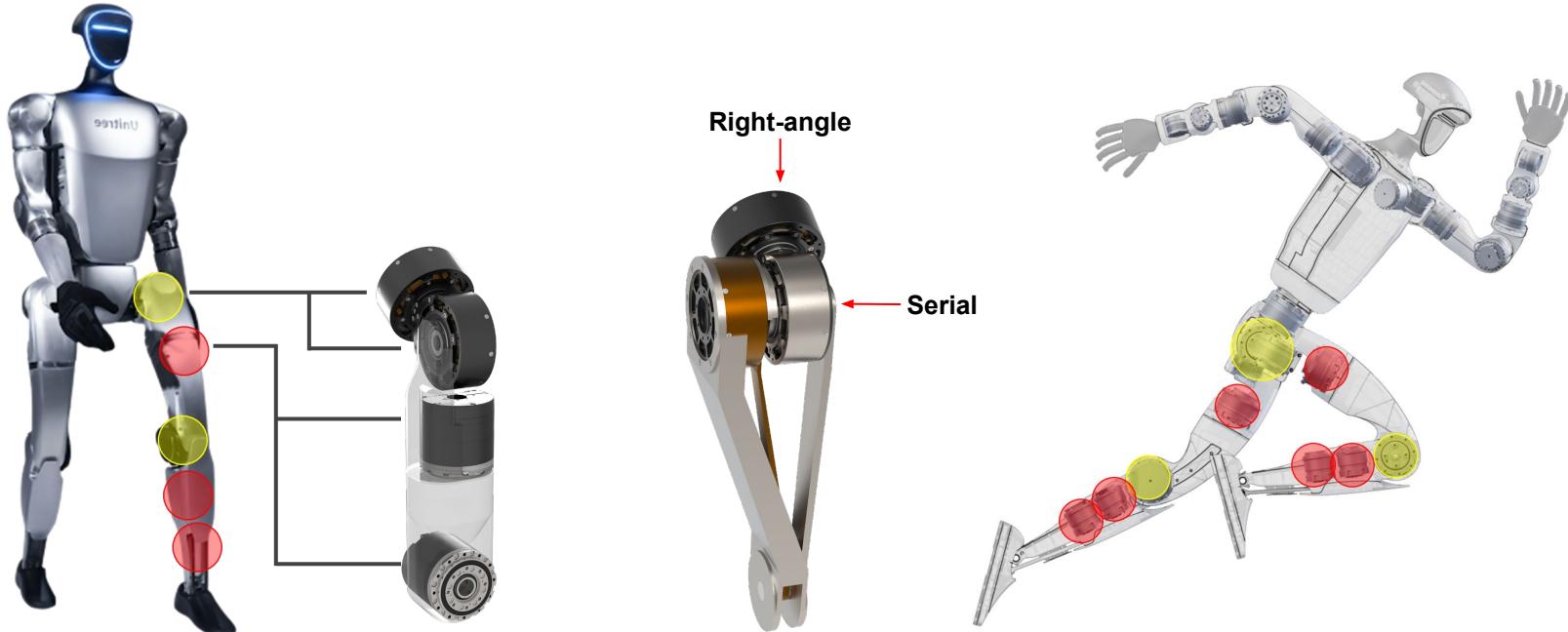
EPFL
ORCA Hand

 NYU
RUKA Hand

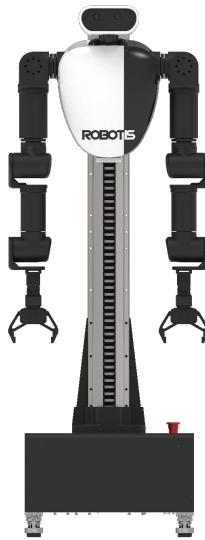
Core Technology

Backed by 26 years of actuator innovation (DYNAMIXEL), ROBOTIS is now positioned to deliver market-ready hollow-shaft QDD technology.

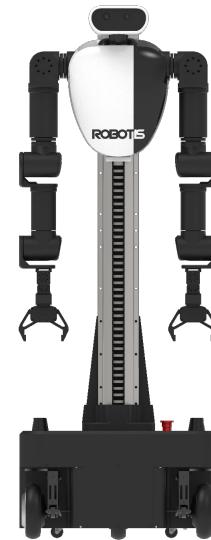
Unique Know-How


ROBOTIS brings deep humanoid actuator insight from years of R&D and industry collaboration

Strong Competitiveness

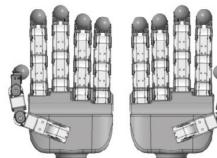

ROBOTIS drives product optimization and cost savings through in-house production capabilities

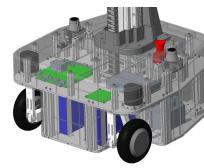
Tailored solutions for optimal performance, reliability, and seamless integration for any application.

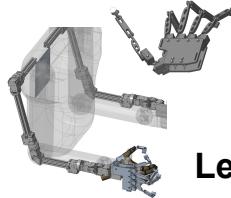


Models:

FFW-BG2: Basic


FFW-SG2: Mobility

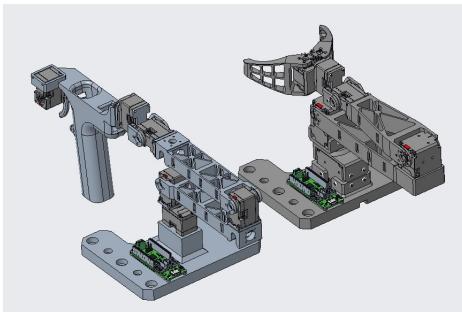

FFW-SH3P: Power (TBD)


Options:

Dexterous Hands

Swerve Drive

Leader

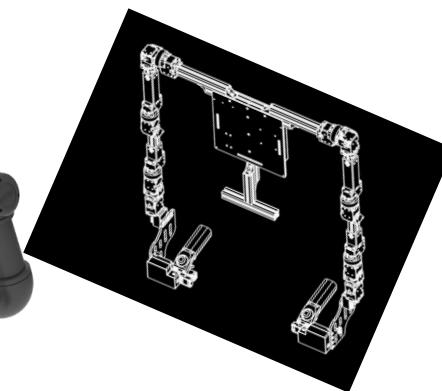

VR Devices

Entry Level
(Affordable AI Manipulator)

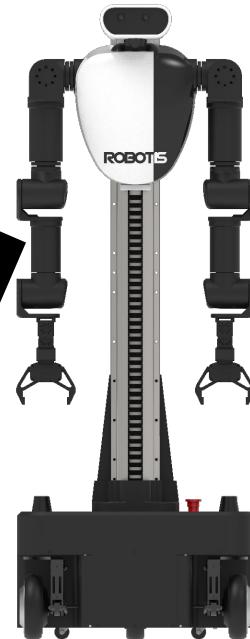
Middle Level
(AI Manipulator / Cobot)

Enterprise Level
(Humanoid robot)

Progressing Towards Advanced Physical AI


OMX-L

OMX


OMX

OMY-L100

OMY-F3M

OMY

FFW-LG2

FFW-BG2/SG2

AI Worker

Open-source Projects

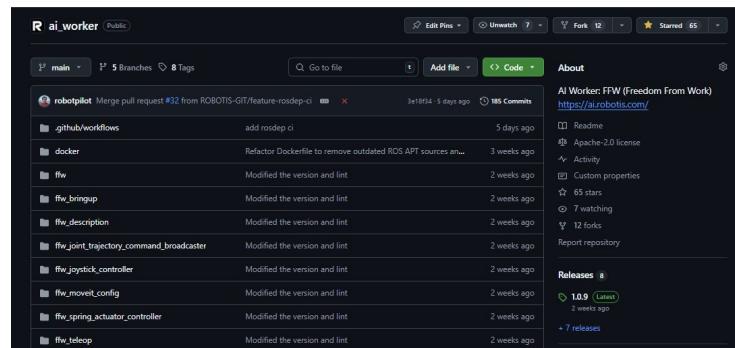
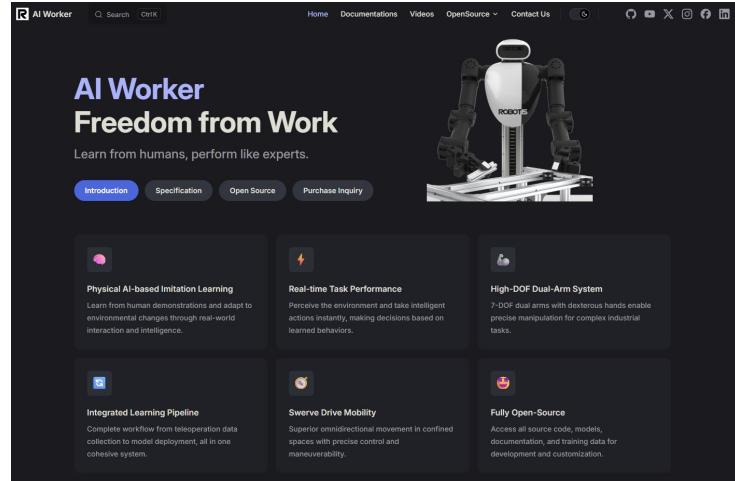
ROS 2 packages for operating the AI Worker
(including Leader & Follower Teleoperation)

https://github.com/ROBOTIS-GIT/ai_worker

ROS 2 package for generating datasets in the LeRobotDataset format

https://github.com/ROBOTIS-GIT/physical_ai_tools

URDF and MuJoCo model files for simulation purposes



https://github.com/ROBOTIS-GIT/robotis_mujoco_menagerie

Community & Discussion

<https://forum.robotis.com/>

Documentation

<https://ai.robotis.com>

「K-휴머노이드 연합」 협력체계 및 미션

Real-World Data for Physical AI: High Impact, High Complexity

Real-World Data Collection: Not Just Beneficial — It's Essential !

Pros

- Real World Data Collection
- High Quality Control
- Specific Task Optimization

Cons

- Slow and Costly
- Not Scalable
- Human Bias

While synthetic data collection offers significant advantages, it falls short in capturing the full complexity of real-world environments.

Pros

- Fast and Affordable
- Safe and Diverse Trials
- Controlled Data Collection

Cons

- Simulation-to-Reality Gap
- Lack of Realism
- Risk of Misguided Learning

ROBOTIS

37, Magokjungang 5-ro 1-gil, Gangseo-gu, Seoul, Korea | Tel 070-8671-2600 | www.robotis.com